November 1. 1978 WOCOMAL FRESHMAN IUEET
ROUND I: EVALUATION, ORDER OF OPERATIONS ANSWERS
(1 point) 1 .
(2 points) 2.(a)
(b)
(3 points) 3.

1. Let $x=-3, z=-2, s=4$ and evaluate the polynomial $\frac{1}{4} z^{2}+\frac{1}{2} s^{2}-x^{2}$.
2.(a) Define * , an operation for positive real numbers, as $a * b=\frac{a b}{a+b}$. Evaluate the expression $4 *(4 * 4)$.
(b) Simplify $3+2 \cdot \frac{1}{3} \cdot \frac{6}{5} \div \frac{1}{10}+28 \div \frac{1}{4}$.
2. Let $a * b=a b-b$ and $c+d=c+d-\frac{c}{d}$.

$$
\text { If } a=2, b=3, c=4, d=\frac{1}{2}, \text { find }(a * b) *(c * d) \text {. }
$$

November 1, 1978 WOCOMAL FRESHMAN LEET
ROUND II: LINEAR EQUATIONS ANSWERS
(1 point) 1. $x=$
(2 points) 2. \qquad
(3 points) 3. $x=$

1. If $a \neq c$, solve for $x: a x+b=c x+d$.
2. Identify by letter, a, b, c, d or $e, ~ a l l$ equations which are identities.
a) $4 x-3(x-4)+2=5(x-2)+6 x$
b) $4 x-3(x-4)-2=-5(x-2)+6 x$
c) $4 x-3(x-4)-2=5(x-2)-6 x$
d) $4 x-3(x+4)+2=5(x-2)-6 x$
e) $-4 x+3(x-4)+2=5(x-2)-6 x$
3. Solve for $x: \quad \frac{54}{x}+7 \frac{1}{2}=\frac{75}{2 x}-3 \frac{1}{2}$
November 1, 1978 WOCOMAL FRESHMAN MEET
ROUND III: OPEN ANSWERS
(1 point) 1.

(2 points) 2.
\qquad
(3 points) 3.
\qquad

1. What number is that whose double exceeds its half by 45 ?
2. By how much does $2^{3^{2}}$ exceed $\left(2^{3}\right)^{2}$?
3. If 2137^{711} is multiplied out, what will be the units digit in the final product?
November 1, 1978 WOCOMAL FRESHIMAN MEET
ROUND IV: NUMERICAL SPEED ANSWERS
SIMPLIFY EACH EXPRESSION COMPLETELY. ANSWERS MUST BE EXACT. 1.EACH QUESTION COUNTS ONE POINT.
4.

\qquad

1. $\frac{[42-3(6+3 \cdot 2)][39]}{26}$
2. $(152+278-305) \cdot(46+239+54+61)$5.
\qquad
3. \qquad
4.

4. $4001 \cdot 3999$
5. $(1.1)^{5}$

November 1, 1978
WOCOMAL FRESHMAN REET
TEAM ROUND: PERCENTAGE WORD PROBLEMS

ANSWERS

1. An experimenter planted 105 seeds, of which 84
 sprouted. What percent of the seeds failed to sprout?
2. A man has $\$ 12,000$ to invest. He decides to invest part 2. of the money at 6% and the rest a.t 7%. How much of the $\$ 12,000$ must he invest at 7% to get more than $\$ 750$ in interest each year?
3. When the base of a triangle is increased 10% and the 3 . altitude to this base is decreased 10%, find the change in area as a percent. Is this an increase of decrease?
4. A baseball team has won 30 of its first 42 games. If 4 . they win 75% of their remaining games how many more must be played for a final winning percentage of 72% ?
5. If 45% of the school are boys and the girls number 858.5 . how many boys are enrolled?
6. After working for several months at $\$ 220$ a week Mr. Brown was given an increase of 20%. Later, during a slack period, his salary was cut 20\%. Mr. Brown's final salary was what percent of his original salary?
7. If the length and width of a rectangle were increased \qquad by 200% each, the area is increased by what percent?

8.
9. Jane invested a certain sum of money on which she \qquad received 6% annually. At the end of the year, the interest was credited to her account, thus making her balance $\$ 583$. What sum did she invest originally?
10. If meat loses 20% of its weight in cooking, how much meat must be cooked to produce 20 kg . of hamburgers?
11. kg .
12. 中 $^{(}$

This was 85% of
11. \qquad
11. 54% of some number is the same as 24% of half the number added to 7. What is the number?
12. Ed and Jim took a test in math on which Ed scored 90% snd Jim scored 70%. Each question was answered
12. \qquad

Bromfield, Grafton, Holy Name, Hudson Catholic, Marlboro, Shrewsbury, South, Tantasqua, Wachusett, Ware, Worcester Academy

ROUND I

$$
\begin{array}{ll}
1 .(1 \mathrm{pt}) & 0 \\
2(\mathrm{a})(1 \mathrm{pt}) & \frac{4}{3} \text { or } 1 \frac{1}{3} \text { or } 1 . \overline{3} \\
\text { (b)(1 pt.) } & 123 \\
3 .(3 \mathrm{pts}) & \frac{5}{2} \text { or } 2 \frac{1}{2} \text { or } 2.5
\end{array}
$$

ROUND II

1. (I pt.) $x=\frac{d-b}{a-c}$ or $\frac{b-d}{b-a}$ etc.

$$
\text { 2. }(2 \mathrm{pts})
$$

$$
b, e
$$

5. 702

$$
3 .(3 p t s .) \quad x=-\frac{3}{2} 0 x-1.5
$$

6.96%
ROUND III
1.(1 pto) 30
7. 800\%
2.(2 pts.) 448
$3 .\left(3 \mathrm{pts}_{6}\right)$ 3
ROUND IV 9. 25 kg.
(1 point each)

1. 9
2. 50.000
3.1
3. 15.999.999
4. 1.61051
5. $\quad \frac{7}{64}$ ox 0.109375
6. $\$ 550$ - $\$ 550$
7. 20

TEAM ROUND (2 points each)

1. 20%
2. more than $\$ 3000$
3. decrease 1\%1010. $\$ 130$
4. $\frac{50}{3}$ or $16 \frac{2}{3}$ or 16.6or20
